The publications of the Galton Laboratory of
National
Eugenics,
University of London, directed by Karl Pearson, and of the Eugenics
Record Office, Cold Spring Harbor, Long Island, N.
University of London, directed by Karl Pearson, and of the Eugenics
Record Office, Cold Spring Harbor, Long Island, N.
Applied Eugenics by Roswell H. Johnson and Paul Popenoe
For the
most part, the Old Americans fall into the intermediate class, the
average index of males being 78. 3 and that of females 79. 5.
Barring a few French Huguenots, the Old Americans considered here are
mostly of British ancestry, and their head form corresponds rather
closely to that of the English of the present day. In England, as is
well known, the round-headed type of Central and Eastern Europe, the
Alpine or Celto-Slav type, has few representatives. The population is
composed principally of long-headed peoples, deriving from the two great
European stocks, the Nordic and the Mediterranean. To the latter the
frequency of dark hair and brown eyes is probably due, both in England
and America.
While the average of the Old Americans corresponds closely to the
average of the English, there is a great deal of variation in both
countries. Unfortunately, it is impossible to compare the present
Americans with their ancestors, because measurements of the latter are
lacking. But to assume that the early colonists did not differ greatly
from the modern English is probably justifiable. A comparison of modern
Americans (of the old white stock) with modern English should give basis
for an opinion as to whether the English stock underwent any marked
modifications, on coming to a new environment.
It has already been noted that the average cephalic index is practically
the same; the only possibility of a change then lies in the amount of
variability. Is the American stock more or less variable? Can a
"melting pot" influence be seen, tending to produce homogeneity, or has
change of environment rather produced greater variability, as is
sometimes said to be the case?
The amount of variability is most conveniently measured by a coefficient
known as the standard deviation ([Greek: s]), which is small when the
range of variation is small, but large when diversity of material is
great. The following comparisons of the point at issue may be made. [202]
Avg. [Greek: s]
100 American men 78. 3 3. 1
1011 Cambridge graduates (English males) 79. 85 2. 95
For the men, little difference is discernible. The Old Americans are
slightly more long-headed than the English, but the amount of variation
in this trait is nearly the same on the two sides of the ocean.
The average of the American women is 79. 5 with [Greek: s] = 2. 6. No
suitable series of English women has been found for comparison. (203) It
will be noted that the American women are slightly more round-headed
than the men; this is found regularly to be the case, when comparisons
of the head form of the two sexes are made in any race.
In addition to establishing norms or standards for anthropological
comparison, the main object of Dr. Hrdlicka's study was to determine
whether the descendants of the early American settlers, living in a new
environment and more or less constantly intermarrying, were being
amalgamated into a distinct sub-type of the white race. It has been
found that such amalgamation has not taken place to any important
degree. The persistence in heredity of certain features, which run down
even through six or eight generations, is one of the remarkable results
brought out by the study.
If the process could continue for a few hundred years more, Dr.
Hrdlicka thinks, it might reach a point where one could speak of the
members of old American families as of a distinct stock. But so far this
point has not been reached; the Americans are almost as diverse and
variable, it appears, as were their first ancestors in this country.
APPENDIX D
THE ESSENCE OF MENDELISM
It is half a century since the Austrian monk, Gregor Mendel, published
in a provincial journal the results of his now famous breeding
experiments with garden peas. They lay unnoticed until 1900, when three
other breeders whose work had led them to similar conclusions, almost
simultaneously discovered the work of Mendel and gave it to the world.
Breeding along the lines marked out by Mendel at once became the most
popular method of attack, among those who were studying heredity. It
became an extremely complicated subject, which can not be grasped
without extended study, but its fundamentals can be briefly summarized.
Inherited differences in individuals, it will be admitted, are due to
differences in their germ-plasms. It is convenient to think of these
differences in germ-plasms (that is, differences in heredity) as being
due to the presence in the germ-plasm of certain hypothetical units,
which are usually referred to as factors. The factor, nowadays, is the
ultimate unit of Mendelian research. Each of these factors is considered
to be nearly or quite constant,--that is, it undergoes little, or no
change from generation to generation. It is ordinarily resistant to
"contamination" by other factors with which it may come in contact in
the cell. The first fundamental principle of Mendelism, then, is the
existence of relatively constant units, the Mendelian factors, as the
basis for transmission of all the traits that go to make up an animal or
plant.
Experimental breeding gives reason to believe that each factor has one
or more alternatives, which may take its place in the mechanism of
heredity, thereby changing the visible character of the individual plant
or animal in which it occurs. To put the matter a little differently,
one germ-cell differs from another in having alternatives present in
place of some of the factors of the latter. A given germ-cell can never
have more than one of the possible alternatives of each factor. These
alternatives of a factor are called its allelomorphs.
Now a mature germ-cell has a single system of these factors: but when
two germ-cells unite, there result from that union two kinds of
cells--namely, immature germ-cells and body-cells; and both these kinds
of cells contain a double system of factors, because of course they have
received a single entire system from each parent. This is the second of
the fundamental principles of Mendelism: that the factors are single in
the mature germ-cell, but in duplicate in the body-cell (and also in the
immature germ-cell).
In every cell with a double system of factors, there are necessarily
present two representatives from each set of allelomorphs, but these may
or may not be alike--or in technical language the individual may be
homozygous, or heterozygous, as regards the given set of alternative
factors. Looking at it from another angle, there is a single visible
character in the plant or animal, but it is produced by a double factor,
in the germ-plasm.
When the immature germ-cell, with its double system of factors, matures,
it throws out half the factors, retaining only a single system: and the
allelomorphic factors which then segregate into different cells are, as
has been said above, ordinarily uninfluenced by their stay together.
But the allelomorphic factors are not the only ones which are segregated
into different germ-cells, at the maturation of the cell; for the
factors which are not alternative are likewise distributed, more or less
independently of each other, so that it is largely a matter of chance
whether factors which enter a cross in the same germ-cell, segregate
into the same germ-cell or different ones, in the next generation. This
is the next fundamental principle of Mendelism, usually comprehended
under the term "segregation," although, as has been pointed out, it is
really a double process, the segregation of alternative factors being a
different thing from the segregation of non-alternative factors.
From this fact of segregation, it follows that as many kinds of
germ-cells can be formed by an individual, as there are possible
combinations of factors, on taking one alternative from each pair of
allelomorphs present. In practice, this means that the possible number
of different germ-cells is almost infinitely great, as would perhaps be
suspected by anyone who has tried to find two living things that are
just alike.
[Illustration: THE CARRIERS OF HEREDITY
FIG. 46. --Many different lines of study have made it seem
probable that much, although not all, of the heredity of an animal or
plant is carried in the nucleus of the germ-cell and that in this
nucleus it is further located in little rods or threads which can be
easily stained so as to become visible, and which have the name of
chromosomes. In the above illustration four different views of the
nucleus of the germ-cell of an earthworm are shown, with the chromosomes
in different stages; in section 19 each chromosome is doubled up like a
hairpin. Study of the fruit-fly Drosophila has made it seem probable not
only that the hypothetical factors of heredity are located in the
chromosomes, but that each factor has a perfectly definite location in
its chromosome; and T. H. Morgan and his associates have worked out an
ingenious method of measuring the distance from either end, at which the
factor lies. Photomicrograph after Foot and Strobell. ]
Such is the essence of Mendelism; and the reader is probably ready to
admit that it is not a simple matter, even when reduced to the
simplest terms. To sum up, the principal features at the base of the
hypothetical structure are these:
1. There exist relatively constant units in the germ-plasm.
2. There are two very distinct relationships which these units may show
to each other. Two (or more) unit factors may be alternatives in the
mechanism of inheritance, indicating that one is a variation (or loss)
of the other; or they may be independent of each other in the mechanism
of inheritance.
3. The mature germ-cell contains a single system of independent factors
(one representative from each set of alternates).
The immature germ-cells, and body-cells, have double systems of
independent factors (two from each set of alternatives).
4. The double system arises simply from the union of two single systems
(i. e. , two germ-cells), without union or even contamination of the
factors involved.
In the formation of a single system (mature germ-cells) from a double
(immature germ-cells), pairs of alternates separate, passing into
different germ-cells. Factors not alternates may or may not
separate--the distribution is largely a matter of chance.
Such are the fundamental principles of Mendelism; but on them was early
grafted a theoretical structure due mainly to the German zoologist,
August Weismann. To understand his part in the story, we must advert to
that much mooted and too often misunderstood problem furnished by the
chromosomes. (See Fig. 46. ) These little rods of easily stained
material, which are found in every cell of the body, were picked out by
Professor Weismann as the probable carriers of heredity. With remarkable
acuteness, he predicted their behavior at cell-division, the intricate
nature of which is usually the despair of every beginner in biology.
When Mendelian breeding, in the early years of this century, showed
temporary pairing and subsequent separation of units in the
germ-cell, it was soon realized that the observed facts of breeding
fitted to a nicety the observed facts (predicted by Weismann) of
chromosome-behavior; for at each cell-division the chromosomes, too,
pair and separate again. The observed behavior of transmitted characters
in animals and plants followed, in so many cases, the observed behavior
of the chromosomes, that many students found it almost impossible to
believe that there was no connection between the two, and Dr. Weismann's
prediction, that the chromosomes are the carriers of heredity, came to
be looked on as a fact, by many biologists.
But when so much of Professor Weismann's system was accepted, other
parts of it went along, including a hypothetical system of "determiners"
in the chromosome, which were believed to determine the development of
characters in the organism. Every trait of an animal or plant, it was
supposed, must be represented in the germ-plasm by its own determiner;
one trait, one determiner. Did a notch in the ear run through a
pedigree? Then it must be due to a determiner for a notch in the ear in
the germ-plasm. Was mathematical ability hereditary? Then there must be
a determiner, the expression of which was mathematical ability.
For a while, this hypothesis was of service in the development of
genetics; some students even began to forget that it was a hypothesis,
and to talk as if it were a fact. But the exhaustive tests of
experimental breeding of plants and animals have long caused most of the
advanced students of genetics to drop this simple hypothesis.
In its place stands the factorial hypothesis, evolved by workers in
America, England, and France at about the same time. As explained in
Chapter V, this hypothesis carries the assumption that every visible
character is due to the effects of not one but many factors in the
germ-cell.
In addition to these fundamentals, there are numerous extensions and
corollaries, some of them of a highly speculative nature. The reader who
is interested in pursuing the subject farther must turn to one of the
text-books on Mendelism.
In plant-breeding a good deal of progress has been made in the exact
study of Mendelian heredity; in animal breeding, somewhat less; in human
heredity, very little. The reason is obvious: that experiments can not
be made in man, and students must depend on the results of such matings
as they can find; that only a very few offspring result from each
mating; and that generations are so long that no one observer can have
more than a few under his eyes. These difficulties make Mendelian
research in man a very slow and uncertain matter.
Altogether, it is probable that something like a hundred characters in
man have been pointed out as inherited in Mendelian fashion. A large
part of these are pathological conditions or rare abnormalities.
But the present writers can not accept most of these cases. It has been
pointed out in Chapter V that there are good reasons for doubting that
feeble-mindedness is inherited in a simple Mendelian fashion, although
it is widely accepted as such. We can not help feeling that in most
cases heredity in man is being made to appear much simpler than it
really is; and that particularly in mental characters, analysis of
traits has by no means reached the bottom.
If we were asked to make out a list of characters, as to the Mendelian
inheritance of which there could be little doubt, we would hardly be
able to go farther than the following:
The sex-linked characters (one kind of color-blindness, hemophilia, one
kind of night-blindness, atrophy of the optic nerve, and a few other
rare abnormalities).
Albinism. This appears to be a recessive, but probably involves multiple
allelomorphs in man, as in other animals.
Brachydactyly, apparently a dominant. This is so much cited in
text-books on Mendelism that the student might think it is a common
character. As a fact, it is extremely rare, being found in only a few
families. The similar trait of orthodactyly or symphalangism, which
likewise appears to be a good Mendelian dominant, seems to exist in only
one family. Traits like these, which are easily defined and occur very
rarely, make up a large part of the cases of probably Mendelian
heredity. They are little more than curiosities, their rarity and
abnormal nature depriving them of evolutionary significance other than
to demonstrate that Mendelian heredity does operate in man.
White blaze in the hair or, as it might better be called to show its
resemblance to the trait found in other mammals, piebaldism. A rather
rare dominant. [204]
Huntington's Chorea, which usually appears to be a good dominant,
although the last investigators (Muncey and Davenport) found some
unconformable cases.
A few abnormalities, such as a premature graying of the hair (one family
cited by K. Pearson) are well enough attested to be admitted. Many
others, such as baldness, are probably Mendelian but not yet
sufficiently supported by evidence.
None of these characters, it will be observed, is of much significance
eugenically. If the exact manner of inheritance of some of the more
important mental and physical traits were known, it would be of value.
But it is not a prerequisite for eugenic action. Enough is known for a
working program.
To sum up: the features in the modern view of heredity, which the reader
must keep in mind, are the following:
1. That the various characters which make up the physical constitution
of any individual plant or animal are due to the action (concurrently
with the environment, of course) of what are called, for convenience,
factors, separable hypothetical units in the germ-plasm, capable of
independent transmission.
2. That each visible character is due to the cooperative action of an
indefinitely large number of factors; conversely, that each of these
factors affects an indefinitely large number of characters.
APPENDIX E
USEFUL WORKS OF REFERENCE
The most complete bibliography is that published by the State Board of
Charities of the State of New York (_Eugenics and Social Welfare
Bulletin_ No. III, pp. 130, Albany, 1913).
An interesting historical review of eugenics, with critical comments on
the literature and a bibliography of 100 titles, was published by A. E.
Hamilton in the _Pedagogical Seminary_, Vol. XXI, pp. 28-61, March,
1914.
Much of the important literature of eugenics has been mentioned in
footnotes. For convenience, a few of the books which are likely to be
most useful to the student are here listed:
GENETICS AND EUGENICS, by W. E. Castle. Harvard University
Press, Cambridge, 1916.
HEREDITY AND ENVIRONMENT IN THE DEVELOPMENT OF MEN, by Edwin G.
Conklin. Princeton University Press, 1915.
HEREDITY IN RELATION TO EUGENICS, by C. B. Davenport, Henry
Holt and Co. , New York, 1911.
ESSAYS IN EUGENICS, by Francis Galton. Eugenics Education
Society, London, 1909.
BEING WELL-BORN, by Michael F. Guyer. Indianapolis,
Bobbs-Merrill Co. , 1916.
THE SOCIAL DIRECTION OF HUMAN EVOLUTION, by W. E. Kellicott.
New York, 1911.
THE PHYSICAL BASIS OF SOCIETY, by Carl Kelsey. New York, D.
Appleton & Co. , 1916.
EUGENICS, by Edward Schuster. Collins' Clear Type Press, London
and Glasgow, 1913.
HEREDITY, by J. Arthur Thompson. Edinburgh, 1908.
GENETICS, by Herbert E. Walter. The Macmillan Co. , New York,
1913.
AN INTRODUCTION TO EUGENICS, by W. C. D. Whetham and C. D.
Whetham. Macmillan and Co. , London, 1912.
HEREDITY AND SOCIETY, by W. C. D. Whetham and C. D. Whetham.
Longmans, Green & Co. , London, 1912.
THE FAMILY AND THE NATION, by W. C. D. Whetham and C. D.
Whetham. Longmans, Green & Co. , London, 1909.
The publications of the Galton Laboratory of National Eugenics,
University of London, directed by Karl Pearson, and of the Eugenics
Record Office, Cold Spring Harbor, Long Island, N. Y. , directed by C. B.
Davenport, furnish a constantly increasing amount of original material
on heredity.
The principal periodicals are the _Journal of Heredity_ (organ of the
American Genetic Association), 511 Eleventh St. , N. W. , Washington, D.
C. (monthly); and the _Eugenics Review_ (organ of the Eugenics Education
Society), Kingsway House, Kingsway, W. C. , London (quarterly). These
periodicals are sent free to members of the respective societies.
Membership in the American organization is $2 a year, in the English 1
guinea a year, associate membership 5 shillings a year.
APPENDIX F
GLOSSARY
ACQUIRED CHARACTER, a modification of a germinal trait after
cell fusion. It is difficult to draw a line between characters that are
acquired and those that are inborn. The idea involved is as follows: in
a standard environment, a given factor in the germ-plasm will develop
into a trait which varies not very widely about a certain mean. The mean
of this trait is taken as representing the germinal trait in its typical
condition. But if the environment be not standard, if it be considerably
changed, the trait will develop a variation far from the mean of that
trait in the species. Thus an American, whose skin in the standard
environment of the United States would be blonde, may under the
environment of Cuba develop into a brunette. Such a wide variation from
the mean thus caused is called an acquired character; it is usually
impressed on the organism after the germinal trait has reached a full,
typical development.
ALLELOMORPH (one another form), one of a pair of factors which
are alternative to each other in Mendelian inheritance. Instead of a
single pair, there may be a group of "multiple allelomorphs," each
member being alternative to every other member of the group.
ALLELOMORPHISM, a relation between two or more factors, such
that two which are present in one zygote do not both enter into the same
gamete, but are separated into sister gametes.
BIOMETRY (life measure), the study of biology by statistical
methods.
BRACHYDACTYLY (short-finger), a condition in which the bones,
particularly of the fingers and toes, fail to grow to their normal
length. In well-marked cases one of these is a reduction from three
phalanges or joints to two.
CHARACTER (a contraction of "characteristic"), a term which is
used, often rather vaguely, to designate any function, feature, or organ
of the body or mind.
CHROMOSOME (color body, so called from its affinity for certain
stains), a body of peculiar protoplasm, in the nucleus of the cell. Each
species has its own characteristic number; the cells of the human body
contain 24 chromosomes each.
CONGENITAL (with birth), present at birth. The term fails to
distinguish between traits which are actually inherited, and
modifications acquired during prenatal life. In the interest of clear
thinking its use should be avoided so far as possible.
CORRELATION (together relation), a relation between two
variables in a certain population, such that for every variation of one,
there is a corresponding variation of the other. Mathematically, two
correlated variables are thus mutually dependent. But a correlation is
merely a statistical description of a particular case, and in some other
population the same two variables might be correlated in a different
way, other influences being at work on them.
CYTOLOGY (cell word), the study of the cell, the constituent
unit of organisms.
DETERMINER (completely end), an element or condition in a
germ-cell, supposed to be essential to the development of a particular
quality, feature, or manner of reaction of the organism which arises
from that germ-cell. The word is gradually falling into disuse, and
"factor" taking its place.
DOMINANCE (mastery), in Mendelian hybrids the capacity of a
character which is derived from only one of two generating gametes to
develop to an extent nearly or quite equal to that exhibited by an
individual which has derived the same character from both of the
generating gametes. In the absence of dominance the given character of
the hybrid usually presents a "blend" or intermediate condition between
the two parents.
DYSGENIC (bad origin), tending to impair the racial qualities
of future generations; the opposite of eugenic.
ENDOGAMY (within mating), a custom of some primitive peoples,
in compliance with which a man must choose his wife from his own group
(clan, gens, tribe, etc. ).
EUGENIC (good origin), tending to improve the racial qualities
of future generations, either physical or mental.
EUTHENIC (good thriving), tending to produce beneficial
acquired characters or better conditions for people to live in, but not
tending (except incidentally and indirectly) to produce people who can
hand on the improvement by heredity.
EVOLUTION (unroll), ORGANIC, the progressive change of
living forms, usually associated with the development of complex from
simple forms.
EXOGAMY (out mating), a custom of primitive peoples which
requires a man to choose a wife from some other group (clan, gens,
tribe, etc. ) than his own.
FACTOR (maker), a name given to the hypothetical _something_,
the independently inheritable element in the germ-cell, whose presence
is necessary to the development of a certain inherited character or
characters or contributes with other factors to the development of a
character. "Gene" and "determiner" are sometimes used as synonyms of
factor.
FEEBLE-MINDEDNESS, a condition in which mental development is
retarded or incomplete. It is a relative term, since an individual who
would be feeble-minded in one society might be normal or even bright in
another. The customary criterion is the inability of the individual,
because of mental defect existing from an early age, to compete on equal
terms with his normal fellows, or to manage himself or his affairs with
ordinary prudence. American students usually distinguish three grades of
mental defect: Idiots are those who are unable to take care of
themselves, even to the extent of guarding against common physical
dangers or satisfying physical needs. Their mentality does not progress
beyond that of a normal two-year-old child. Imbeciles can care for
themselves after a fashion, but are unable to earn their living. Their
mental ages range from three to seven years, inclusive. Morons, who
correspond to the common acceptation of the term feeble-minded, "can
under proper direction become more or less self-supporting but they are
as a rule incapable of undertaking affairs which demand judgment or
involve unrestricted competition with normal individuals. Their
intelligence ranges with that of normal children from seven to twelve
years of age. " There is necessarily a considerable borderline, but any
adult whose intelligence is beyond that of the normal twelve-year-old
child is usually considered to be not feeble-minded.
GAMETE (mate), a mature germ-cell; in animals an ovum or
spermatozoon.
GENETICS (origins), for a long time meant the study of
evolution by experimental breeding and was often synonomous with
Mendelism. It is gradually returning to its broader, original meaning of
the study of variation and heredity, that is, the origin of the
individual's traits. This broader meaning is preferable.
GERMINAL (sprig), due to something present in the germ-cell. A
trait is germinal when its basis is inherited,--as eye color,--and when
it develops with nothing more than the standard environment; remaining
relatively constant from one generation to another, except as influenced
by reproduction.
GERM-PLASM (sprig form), mature germ-cells and the living
material from which they are produced.
HAEMOPHILIA (blood love), an inability of the blood to clot. It
thus becomes impossible to stop the flow of blood from a cut, and one
who has inherited haemophilia usually dies sooner or later from
haemorrhage.
HEREDITY (heirship), is usually considered from the outside,
when it may properly be defined as organic resemblance based on descent,
or the correlation between relatives. But a better definition, based on
the results of genetics, looks at it as a mechanism, not as an external
appearance. From this point of view, heredity may be said to be "the
persistence of certain cell-constituents (in the germ-cells) through an
unending number of cell-divisions. "
HETEROZYGOTE (different yolk), a zygotic individual which
contains both members of an allelomorphic pair.
HOMOZYGOTE (same yolk), an individual which contains only one
member of an allelomorphic pair, but contains that in duplicate, having
received it from both parents. A homozygous individual, having been
formed by the union of like gametes, in turn regularly produces gametes
of only one kind with respect to any given factor, thus giving rise to
offspring which are, in this regard, like the parents; in other words,
homozygotes regularly "breed true. " An individual may be a homozygote
with respect to one factor and a heterozygote with respect to another.
HORMONES (chain), the secretions of various internal glands,
which are carried in the blood and have an important specific influence
on the growth and functioning of various parts of the body. Their exact
nature is not yet understood.
INBORN usually means germinal, as applied to a trait, and it is
so used in this book. Strictly speaking, however, any trait which
appears in a child at birth might be called inborn, and some writers,
particularly medical men, thus refer to traits acquired in prenatal
life. Because of this ambiguity the word should be carefully defined
when used, or avoided.
INHERENT (in stick), as used in this book, is synonymous with
germinal.
INDUCTION (in lead), a change brought about in the germ-plasm
with the effect of temporarily modifying the characters of an
individual produced from that germ-plasm; but not of changing in a
definite and permanent way any such germ-plasm and therefore any
individual inherited traits.
INNATE (inborn), synonymous with inborn.
LATENT (lie hidden), a term applied to traits or characters
whose factors exist in the germ-plasm of an individual, but which are
not visible in his body.
LAW, in natural science means a concise and comprehensive
description of an observed uniform sequence of events. It is thus quite
different from the law of jurists, who mean a rule laid down for the
guidance of an intelligent being, by an intelligent being having power
over him.
MENDELISM, a collection of laws of heredity (see Appendix D)
so-called after the discoverer of the first of them to become known;
also the analytical study of heredity with a view to learning the
constitution of the germ-cells of animals and plants.
MENDELIZE, to follow Mendel's laws of inheritance.
MORES (customs), the approved customs or unwritten laws of a
people; the conventions of society; popular usage or folk-ways which are
reputable.
MUTATION (change), has now two accepted meanings: (1) a
profound change in the germ-plasm of an organism such as will produce
numerous changes in its progeny; and (2) a discontinuous heritable
change in a Mendelian factor. It is used in the first sense by De Vries
and other "mutationists" and in the second sense by Morgan and other
Mendelists; confusion has arisen from failure to note the difference in
usage.
NORMAL CURVE, the curve of distribution of variations of
something whose variations are due to a multiplicity of causes acting
nearly equally in both directions. It is characterized by having more
individuals of a mediocre degree and progressively fewer above and below
this mode.
NUCLEUS (little nut), a central, highly-organized part of every
living cell, which seems to play a directive role in cell-development
and contains, among other things, the chromosomes.
PATENT (lie open), a term applied to traits which are
manifestly represented in the body as well as the germ-plasm of an
individual. The converse of "latent. "
PROBABILITY CURVE, the same as normal curve. Also called a
Gaussian curve.
PROTOPLASM (first form), "the physical basis of life"; a
chemical compound or probably an emulsion of numerous compounds. It
contains proteins which differ slightly in many species of organism. It
contains carbon, hydrogen, oxygen, nitrogen, sulphur, and various salts,
but is so complex as to defy exhaustive analysis.
PSYCHIATRY (soul healing), the study of diseases of the mind.
RECESSIVE (draw back), the converse of dominant; applied to one
of a pair of contrasted Mendelian characters which can not appear in the
presence of the other.
REGRESSION (back go), the average variation of one variable for
a unit variation of a correlated variable.
SEGREGATION (aside flock), (1) as used in eugenics means the
policy of isolating feeble-minded and other anti-social individuals from
the normal population into institutions, colonies, etc. , where the two
sexes are kept apart. (2) The term is also used technically in genetics,
to refer to the discontinuity of the variation of characteristics
resulting from the independent distribution of factors before or at the
time of formation of the gametes.
SELECTION (apart pick), the choice (for perpetuation by
reproduction) from a mixed population, of the individuals possessing in
common a certain character or a certain degree of some character. Two
kinds of selection may be distinguished: (1) natural selection, in which
choice is made automatically by the failure to reproduce (through death
or some other cause) of the individuals who are not "fit" to pass the
tests of the environment (vitality, disease resistance, speed, success
in mating, or what not); and (2) artificial selection, in which the
choice is made consciously by man, as a livestock breeder.
SEX-LIMITED, a term applied to traits which differ in the two
sexes, because influenced by the hormones of the reproductive glands.
Example, the beard.
SEX-LINKED, a term applied to traits which are connected with
sex _accidentally_ and not physiologically in development. The current
explanation is that such traits happen to be in the same chromosome as
the determiner of maleness or femaleness, as the case may be.
Color-blindness is the classical example in man.
SEXUAL SELECTION, the conscious or unconscious preference by
individuals of one sex, or by that sex as a whole, for individuals of
the other sex who possess some particular attribute or attributes in a
degree above or below the average of their sex. If the deviation of the
chosen character is in the same direction (plus or minus) as in the
chooser, the mating is called assortative; if in one direction
independent of the characteristic of the chooser, it is called
preferential.
SOMA (body), the body as distinguished from the germ-plasm.
From this point of view every individual consists of only two
parts,--germ-plasm and soma or somatoplasm.
TRAIT, a term used by geneticists as a synonym of "character. "
UNIT-CHARACTER, in Mendelian heredity a character or
alternative difference of any kind, which is apparently not capable of
subdivision in heredity, but is inherited as a whole, and which is
capable of becoming associated in new combinations with other
characters. The term is now going out of use, as it makes for clearer
thinking about heredity to fix the attention on the factors of the
germ-cells instead of on the characters of the adult.
VARIATION, a deviation in the size, shape, or other feature of
a character or trait, from the mean or average of that character in the
species.
VESTIGIAL (footstep), a term applied to a character which at
some time in the evolutionary history of the species possessed
importance, or functioned fully, but which has now lost its importance
or its original use, so that it remains a mere souvenir of the past, in
a degenerated condition. Example, the muscles which move a man's ears.
ZYGOTE (yolk), the fertilized egg-cell; the united cell formed
by the union of the ovum and spermatozoon after fertilization.
ZYMOTIC, caused by a microorganism,--a term applied to
diseases. Example, tuberculosis.
INDEX
A
Abderholden, E. , 422
Acquired character, 437
Administrative aspects, 194
Adult mortality, 345
Afghans, 321
Africa, 290, 291
Agriculture, 307
Aguinaldo, E. , 314
Aims of eugenics, 152
Alabama, 187, 202, 296
Alaska, 187
Albinism, 433
Alcohol, 44, 48, 49, 130
Alcoholism, 213, 302
Aleurone, 104
Allelomorphism, 437
Allelomorphs, 108, 427, 437
Alpine Type, 427
America, 432
American Breeders Assn. , 154, 194
American Breeders Magazine, 154
American Prison Assn. , 182
American Genetic Assn. , 154, 277
American stock, 258, 424
Americans, 427, 428
American-Chinese Marriages, 313
Amherst College, 255, 266
Amoy, 315
Ancestral Inheritance Law, 112
Anglian, 426
Anglo-Saxon, 426
Anthropological Soc. of Denmark, 155
Apartment houses, 377
Appearance, 219, 221
Appropriate opportunity, 366
Arabs, 230, 280
Argentina, 326
Aristocracy, 362
Aristodemocracy, 362
Aristotle, 32
Arizona, 187
Arkansas, 241
Armenians, 299, 302, 427
Army, American, 83
Arnold, M. , 394
Arsenic, 63
Art, 96
Asiatic immigration, 311
Asiatic Turkey, 299
Assortative mating, 126, 211
Athenians, 133
Atrophy of optic nerve, 433
Atwater, W. O. , 422
Austria, 137, 155
Australian, 129
Australian marriages, 222
Automobile, effect of 377
B
Baby saving campaign, 408
Bachelors, tax on, 353
Back to the farm movement, 355
Backward children, 188
Bahama Islands, 203
Baker, O. E. , 6
Baltzly, A. , 327
Banker, H. J. , 267, 245
Banns, 197
Barrington, A. , 13
Batz, 207
Baur, E. , 104
Bean and Mall, 285
Beans, Fig. 13.
Beeton, M. , 144, 404, 408, 411
Beggars, 302
Belgium, 138, 155, 324
Bell, A. G. , 144, 183, 226, 345, 347, 350, 402, 407, 411
Bentham, J. , 165
Berlin, 140
Bermuda, 205
Bertholet, E. , 57
Bertillon, J. , 140
Besant, A. , 269
Better babies movement, 155
Bezzola, D. , 56
Billings, W. C. , 313
Binet tests, 287
Biometric method, 31
Biometry, 437
Birth control, 269
Bisexual societies, 234
Bismarck, von, O. E. L. , 422
Blakeslee, A. F. , Figs. 2, 3, 13, 14
Blascoe, F. , 282
Bleeders, 38
Blind, 156
Blindness, 32
Blucher, von G. L. , 321
Blumer, J. C. , 244
Boas, F. , 41, 282, 283
Boer War, 321
Boer-Hottentot mulattoes, 300
Body-plasm, 27
Bohemians, 311, 427
Boston, Mass. , 261, 182
Boveri, T. , 27
Brachybioty, 409
Brachycephalic heads, 427
Brachydactyly, 433, 437, Fig. 17
Bradlaugh, C. , 269
Brazil, 325
Breton race, 273
Bridges, C. B. , 101
Brigham Young College, 219
British, 427
British Columbia, 305
British Indian immigration, 312
Bruce, H. A. , 23
Bryn Mawr College, 240, 263
Burris, W. P. , 97
C
Caesar, J. , 179, 207
Caffeine, 45
California, 172, 192
California University, 100
Cambridge graduates, 428
Cambridge, Mass. , 261
Cape Cod, 206
Carnegie Institution of Washington, 154
Carnegie, Margaret Morrison, School, 278
Carpenter, E. , 379
Carver, T. N. , 305, 367
Castle, C. S. , 243
Castle, W. E. , 87, 100, 105, 108, 300, 419, 435, Fig. 20
Catlin, G. , 130
Cattell, J. McK. , 20, 21, 268, 269
Cavour, C. B. , 19
Celibacy, 173
Celtic, 41
Celto-Slav Type, 427
Central Europe, 427
Ceylon, 129
Character, 219, 221, 437
Charm and taboo, 395
Chastity, 251, 386
Chicago, Ill. , 182, 261
Chicks, 47
Child bearing, Effect of, 346
Child Labor, 368
Childless wives, 268
Child mortality, 403, 407
Children surviving per capita, 267
China, 20, 137, 274
Chinese, 315, 397, Fig. 5
Chinese immigration, 321
Chorea, Huntingdon's, 109, 433
Christianity, 171, 394
Chromosomes, 87, 431, 437
Church acquaintances, 234
Civic Club (Pittsburgh, Penn. ), 371
Civil War, 268, 301, 321, 326, 402
Cleopatra, 207
Climate, 42
Cobb, M. V. , 96
Co-education, 267, 383
Coefficient of correlation, 212
Coercive means, 184
Cold Spring Harbor, 100
Coldness, 251
Cole, L.
most part, the Old Americans fall into the intermediate class, the
average index of males being 78. 3 and that of females 79. 5.
Barring a few French Huguenots, the Old Americans considered here are
mostly of British ancestry, and their head form corresponds rather
closely to that of the English of the present day. In England, as is
well known, the round-headed type of Central and Eastern Europe, the
Alpine or Celto-Slav type, has few representatives. The population is
composed principally of long-headed peoples, deriving from the two great
European stocks, the Nordic and the Mediterranean. To the latter the
frequency of dark hair and brown eyes is probably due, both in England
and America.
While the average of the Old Americans corresponds closely to the
average of the English, there is a great deal of variation in both
countries. Unfortunately, it is impossible to compare the present
Americans with their ancestors, because measurements of the latter are
lacking. But to assume that the early colonists did not differ greatly
from the modern English is probably justifiable. A comparison of modern
Americans (of the old white stock) with modern English should give basis
for an opinion as to whether the English stock underwent any marked
modifications, on coming to a new environment.
It has already been noted that the average cephalic index is practically
the same; the only possibility of a change then lies in the amount of
variability. Is the American stock more or less variable? Can a
"melting pot" influence be seen, tending to produce homogeneity, or has
change of environment rather produced greater variability, as is
sometimes said to be the case?
The amount of variability is most conveniently measured by a coefficient
known as the standard deviation ([Greek: s]), which is small when the
range of variation is small, but large when diversity of material is
great. The following comparisons of the point at issue may be made. [202]
Avg. [Greek: s]
100 American men 78. 3 3. 1
1011 Cambridge graduates (English males) 79. 85 2. 95
For the men, little difference is discernible. The Old Americans are
slightly more long-headed than the English, but the amount of variation
in this trait is nearly the same on the two sides of the ocean.
The average of the American women is 79. 5 with [Greek: s] = 2. 6. No
suitable series of English women has been found for comparison. (203) It
will be noted that the American women are slightly more round-headed
than the men; this is found regularly to be the case, when comparisons
of the head form of the two sexes are made in any race.
In addition to establishing norms or standards for anthropological
comparison, the main object of Dr. Hrdlicka's study was to determine
whether the descendants of the early American settlers, living in a new
environment and more or less constantly intermarrying, were being
amalgamated into a distinct sub-type of the white race. It has been
found that such amalgamation has not taken place to any important
degree. The persistence in heredity of certain features, which run down
even through six or eight generations, is one of the remarkable results
brought out by the study.
If the process could continue for a few hundred years more, Dr.
Hrdlicka thinks, it might reach a point where one could speak of the
members of old American families as of a distinct stock. But so far this
point has not been reached; the Americans are almost as diverse and
variable, it appears, as were their first ancestors in this country.
APPENDIX D
THE ESSENCE OF MENDELISM
It is half a century since the Austrian monk, Gregor Mendel, published
in a provincial journal the results of his now famous breeding
experiments with garden peas. They lay unnoticed until 1900, when three
other breeders whose work had led them to similar conclusions, almost
simultaneously discovered the work of Mendel and gave it to the world.
Breeding along the lines marked out by Mendel at once became the most
popular method of attack, among those who were studying heredity. It
became an extremely complicated subject, which can not be grasped
without extended study, but its fundamentals can be briefly summarized.
Inherited differences in individuals, it will be admitted, are due to
differences in their germ-plasms. It is convenient to think of these
differences in germ-plasms (that is, differences in heredity) as being
due to the presence in the germ-plasm of certain hypothetical units,
which are usually referred to as factors. The factor, nowadays, is the
ultimate unit of Mendelian research. Each of these factors is considered
to be nearly or quite constant,--that is, it undergoes little, or no
change from generation to generation. It is ordinarily resistant to
"contamination" by other factors with which it may come in contact in
the cell. The first fundamental principle of Mendelism, then, is the
existence of relatively constant units, the Mendelian factors, as the
basis for transmission of all the traits that go to make up an animal or
plant.
Experimental breeding gives reason to believe that each factor has one
or more alternatives, which may take its place in the mechanism of
heredity, thereby changing the visible character of the individual plant
or animal in which it occurs. To put the matter a little differently,
one germ-cell differs from another in having alternatives present in
place of some of the factors of the latter. A given germ-cell can never
have more than one of the possible alternatives of each factor. These
alternatives of a factor are called its allelomorphs.
Now a mature germ-cell has a single system of these factors: but when
two germ-cells unite, there result from that union two kinds of
cells--namely, immature germ-cells and body-cells; and both these kinds
of cells contain a double system of factors, because of course they have
received a single entire system from each parent. This is the second of
the fundamental principles of Mendelism: that the factors are single in
the mature germ-cell, but in duplicate in the body-cell (and also in the
immature germ-cell).
In every cell with a double system of factors, there are necessarily
present two representatives from each set of allelomorphs, but these may
or may not be alike--or in technical language the individual may be
homozygous, or heterozygous, as regards the given set of alternative
factors. Looking at it from another angle, there is a single visible
character in the plant or animal, but it is produced by a double factor,
in the germ-plasm.
When the immature germ-cell, with its double system of factors, matures,
it throws out half the factors, retaining only a single system: and the
allelomorphic factors which then segregate into different cells are, as
has been said above, ordinarily uninfluenced by their stay together.
But the allelomorphic factors are not the only ones which are segregated
into different germ-cells, at the maturation of the cell; for the
factors which are not alternative are likewise distributed, more or less
independently of each other, so that it is largely a matter of chance
whether factors which enter a cross in the same germ-cell, segregate
into the same germ-cell or different ones, in the next generation. This
is the next fundamental principle of Mendelism, usually comprehended
under the term "segregation," although, as has been pointed out, it is
really a double process, the segregation of alternative factors being a
different thing from the segregation of non-alternative factors.
From this fact of segregation, it follows that as many kinds of
germ-cells can be formed by an individual, as there are possible
combinations of factors, on taking one alternative from each pair of
allelomorphs present. In practice, this means that the possible number
of different germ-cells is almost infinitely great, as would perhaps be
suspected by anyone who has tried to find two living things that are
just alike.
[Illustration: THE CARRIERS OF HEREDITY
FIG. 46. --Many different lines of study have made it seem
probable that much, although not all, of the heredity of an animal or
plant is carried in the nucleus of the germ-cell and that in this
nucleus it is further located in little rods or threads which can be
easily stained so as to become visible, and which have the name of
chromosomes. In the above illustration four different views of the
nucleus of the germ-cell of an earthworm are shown, with the chromosomes
in different stages; in section 19 each chromosome is doubled up like a
hairpin. Study of the fruit-fly Drosophila has made it seem probable not
only that the hypothetical factors of heredity are located in the
chromosomes, but that each factor has a perfectly definite location in
its chromosome; and T. H. Morgan and his associates have worked out an
ingenious method of measuring the distance from either end, at which the
factor lies. Photomicrograph after Foot and Strobell. ]
Such is the essence of Mendelism; and the reader is probably ready to
admit that it is not a simple matter, even when reduced to the
simplest terms. To sum up, the principal features at the base of the
hypothetical structure are these:
1. There exist relatively constant units in the germ-plasm.
2. There are two very distinct relationships which these units may show
to each other. Two (or more) unit factors may be alternatives in the
mechanism of inheritance, indicating that one is a variation (or loss)
of the other; or they may be independent of each other in the mechanism
of inheritance.
3. The mature germ-cell contains a single system of independent factors
(one representative from each set of alternates).
The immature germ-cells, and body-cells, have double systems of
independent factors (two from each set of alternatives).
4. The double system arises simply from the union of two single systems
(i. e. , two germ-cells), without union or even contamination of the
factors involved.
In the formation of a single system (mature germ-cells) from a double
(immature germ-cells), pairs of alternates separate, passing into
different germ-cells. Factors not alternates may or may not
separate--the distribution is largely a matter of chance.
Such are the fundamental principles of Mendelism; but on them was early
grafted a theoretical structure due mainly to the German zoologist,
August Weismann. To understand his part in the story, we must advert to
that much mooted and too often misunderstood problem furnished by the
chromosomes. (See Fig. 46. ) These little rods of easily stained
material, which are found in every cell of the body, were picked out by
Professor Weismann as the probable carriers of heredity. With remarkable
acuteness, he predicted their behavior at cell-division, the intricate
nature of which is usually the despair of every beginner in biology.
When Mendelian breeding, in the early years of this century, showed
temporary pairing and subsequent separation of units in the
germ-cell, it was soon realized that the observed facts of breeding
fitted to a nicety the observed facts (predicted by Weismann) of
chromosome-behavior; for at each cell-division the chromosomes, too,
pair and separate again. The observed behavior of transmitted characters
in animals and plants followed, in so many cases, the observed behavior
of the chromosomes, that many students found it almost impossible to
believe that there was no connection between the two, and Dr. Weismann's
prediction, that the chromosomes are the carriers of heredity, came to
be looked on as a fact, by many biologists.
But when so much of Professor Weismann's system was accepted, other
parts of it went along, including a hypothetical system of "determiners"
in the chromosome, which were believed to determine the development of
characters in the organism. Every trait of an animal or plant, it was
supposed, must be represented in the germ-plasm by its own determiner;
one trait, one determiner. Did a notch in the ear run through a
pedigree? Then it must be due to a determiner for a notch in the ear in
the germ-plasm. Was mathematical ability hereditary? Then there must be
a determiner, the expression of which was mathematical ability.
For a while, this hypothesis was of service in the development of
genetics; some students even began to forget that it was a hypothesis,
and to talk as if it were a fact. But the exhaustive tests of
experimental breeding of plants and animals have long caused most of the
advanced students of genetics to drop this simple hypothesis.
In its place stands the factorial hypothesis, evolved by workers in
America, England, and France at about the same time. As explained in
Chapter V, this hypothesis carries the assumption that every visible
character is due to the effects of not one but many factors in the
germ-cell.
In addition to these fundamentals, there are numerous extensions and
corollaries, some of them of a highly speculative nature. The reader who
is interested in pursuing the subject farther must turn to one of the
text-books on Mendelism.
In plant-breeding a good deal of progress has been made in the exact
study of Mendelian heredity; in animal breeding, somewhat less; in human
heredity, very little. The reason is obvious: that experiments can not
be made in man, and students must depend on the results of such matings
as they can find; that only a very few offspring result from each
mating; and that generations are so long that no one observer can have
more than a few under his eyes. These difficulties make Mendelian
research in man a very slow and uncertain matter.
Altogether, it is probable that something like a hundred characters in
man have been pointed out as inherited in Mendelian fashion. A large
part of these are pathological conditions or rare abnormalities.
But the present writers can not accept most of these cases. It has been
pointed out in Chapter V that there are good reasons for doubting that
feeble-mindedness is inherited in a simple Mendelian fashion, although
it is widely accepted as such. We can not help feeling that in most
cases heredity in man is being made to appear much simpler than it
really is; and that particularly in mental characters, analysis of
traits has by no means reached the bottom.
If we were asked to make out a list of characters, as to the Mendelian
inheritance of which there could be little doubt, we would hardly be
able to go farther than the following:
The sex-linked characters (one kind of color-blindness, hemophilia, one
kind of night-blindness, atrophy of the optic nerve, and a few other
rare abnormalities).
Albinism. This appears to be a recessive, but probably involves multiple
allelomorphs in man, as in other animals.
Brachydactyly, apparently a dominant. This is so much cited in
text-books on Mendelism that the student might think it is a common
character. As a fact, it is extremely rare, being found in only a few
families. The similar trait of orthodactyly or symphalangism, which
likewise appears to be a good Mendelian dominant, seems to exist in only
one family. Traits like these, which are easily defined and occur very
rarely, make up a large part of the cases of probably Mendelian
heredity. They are little more than curiosities, their rarity and
abnormal nature depriving them of evolutionary significance other than
to demonstrate that Mendelian heredity does operate in man.
White blaze in the hair or, as it might better be called to show its
resemblance to the trait found in other mammals, piebaldism. A rather
rare dominant. [204]
Huntington's Chorea, which usually appears to be a good dominant,
although the last investigators (Muncey and Davenport) found some
unconformable cases.
A few abnormalities, such as a premature graying of the hair (one family
cited by K. Pearson) are well enough attested to be admitted. Many
others, such as baldness, are probably Mendelian but not yet
sufficiently supported by evidence.
None of these characters, it will be observed, is of much significance
eugenically. If the exact manner of inheritance of some of the more
important mental and physical traits were known, it would be of value.
But it is not a prerequisite for eugenic action. Enough is known for a
working program.
To sum up: the features in the modern view of heredity, which the reader
must keep in mind, are the following:
1. That the various characters which make up the physical constitution
of any individual plant or animal are due to the action (concurrently
with the environment, of course) of what are called, for convenience,
factors, separable hypothetical units in the germ-plasm, capable of
independent transmission.
2. That each visible character is due to the cooperative action of an
indefinitely large number of factors; conversely, that each of these
factors affects an indefinitely large number of characters.
APPENDIX E
USEFUL WORKS OF REFERENCE
The most complete bibliography is that published by the State Board of
Charities of the State of New York (_Eugenics and Social Welfare
Bulletin_ No. III, pp. 130, Albany, 1913).
An interesting historical review of eugenics, with critical comments on
the literature and a bibliography of 100 titles, was published by A. E.
Hamilton in the _Pedagogical Seminary_, Vol. XXI, pp. 28-61, March,
1914.
Much of the important literature of eugenics has been mentioned in
footnotes. For convenience, a few of the books which are likely to be
most useful to the student are here listed:
GENETICS AND EUGENICS, by W. E. Castle. Harvard University
Press, Cambridge, 1916.
HEREDITY AND ENVIRONMENT IN THE DEVELOPMENT OF MEN, by Edwin G.
Conklin. Princeton University Press, 1915.
HEREDITY IN RELATION TO EUGENICS, by C. B. Davenport, Henry
Holt and Co. , New York, 1911.
ESSAYS IN EUGENICS, by Francis Galton. Eugenics Education
Society, London, 1909.
BEING WELL-BORN, by Michael F. Guyer. Indianapolis,
Bobbs-Merrill Co. , 1916.
THE SOCIAL DIRECTION OF HUMAN EVOLUTION, by W. E. Kellicott.
New York, 1911.
THE PHYSICAL BASIS OF SOCIETY, by Carl Kelsey. New York, D.
Appleton & Co. , 1916.
EUGENICS, by Edward Schuster. Collins' Clear Type Press, London
and Glasgow, 1913.
HEREDITY, by J. Arthur Thompson. Edinburgh, 1908.
GENETICS, by Herbert E. Walter. The Macmillan Co. , New York,
1913.
AN INTRODUCTION TO EUGENICS, by W. C. D. Whetham and C. D.
Whetham. Macmillan and Co. , London, 1912.
HEREDITY AND SOCIETY, by W. C. D. Whetham and C. D. Whetham.
Longmans, Green & Co. , London, 1912.
THE FAMILY AND THE NATION, by W. C. D. Whetham and C. D.
Whetham. Longmans, Green & Co. , London, 1909.
The publications of the Galton Laboratory of National Eugenics,
University of London, directed by Karl Pearson, and of the Eugenics
Record Office, Cold Spring Harbor, Long Island, N. Y. , directed by C. B.
Davenport, furnish a constantly increasing amount of original material
on heredity.
The principal periodicals are the _Journal of Heredity_ (organ of the
American Genetic Association), 511 Eleventh St. , N. W. , Washington, D.
C. (monthly); and the _Eugenics Review_ (organ of the Eugenics Education
Society), Kingsway House, Kingsway, W. C. , London (quarterly). These
periodicals are sent free to members of the respective societies.
Membership in the American organization is $2 a year, in the English 1
guinea a year, associate membership 5 shillings a year.
APPENDIX F
GLOSSARY
ACQUIRED CHARACTER, a modification of a germinal trait after
cell fusion. It is difficult to draw a line between characters that are
acquired and those that are inborn. The idea involved is as follows: in
a standard environment, a given factor in the germ-plasm will develop
into a trait which varies not very widely about a certain mean. The mean
of this trait is taken as representing the germinal trait in its typical
condition. But if the environment be not standard, if it be considerably
changed, the trait will develop a variation far from the mean of that
trait in the species. Thus an American, whose skin in the standard
environment of the United States would be blonde, may under the
environment of Cuba develop into a brunette. Such a wide variation from
the mean thus caused is called an acquired character; it is usually
impressed on the organism after the germinal trait has reached a full,
typical development.
ALLELOMORPH (one another form), one of a pair of factors which
are alternative to each other in Mendelian inheritance. Instead of a
single pair, there may be a group of "multiple allelomorphs," each
member being alternative to every other member of the group.
ALLELOMORPHISM, a relation between two or more factors, such
that two which are present in one zygote do not both enter into the same
gamete, but are separated into sister gametes.
BIOMETRY (life measure), the study of biology by statistical
methods.
BRACHYDACTYLY (short-finger), a condition in which the bones,
particularly of the fingers and toes, fail to grow to their normal
length. In well-marked cases one of these is a reduction from three
phalanges or joints to two.
CHARACTER (a contraction of "characteristic"), a term which is
used, often rather vaguely, to designate any function, feature, or organ
of the body or mind.
CHROMOSOME (color body, so called from its affinity for certain
stains), a body of peculiar protoplasm, in the nucleus of the cell. Each
species has its own characteristic number; the cells of the human body
contain 24 chromosomes each.
CONGENITAL (with birth), present at birth. The term fails to
distinguish between traits which are actually inherited, and
modifications acquired during prenatal life. In the interest of clear
thinking its use should be avoided so far as possible.
CORRELATION (together relation), a relation between two
variables in a certain population, such that for every variation of one,
there is a corresponding variation of the other. Mathematically, two
correlated variables are thus mutually dependent. But a correlation is
merely a statistical description of a particular case, and in some other
population the same two variables might be correlated in a different
way, other influences being at work on them.
CYTOLOGY (cell word), the study of the cell, the constituent
unit of organisms.
DETERMINER (completely end), an element or condition in a
germ-cell, supposed to be essential to the development of a particular
quality, feature, or manner of reaction of the organism which arises
from that germ-cell. The word is gradually falling into disuse, and
"factor" taking its place.
DOMINANCE (mastery), in Mendelian hybrids the capacity of a
character which is derived from only one of two generating gametes to
develop to an extent nearly or quite equal to that exhibited by an
individual which has derived the same character from both of the
generating gametes. In the absence of dominance the given character of
the hybrid usually presents a "blend" or intermediate condition between
the two parents.
DYSGENIC (bad origin), tending to impair the racial qualities
of future generations; the opposite of eugenic.
ENDOGAMY (within mating), a custom of some primitive peoples,
in compliance with which a man must choose his wife from his own group
(clan, gens, tribe, etc. ).
EUGENIC (good origin), tending to improve the racial qualities
of future generations, either physical or mental.
EUTHENIC (good thriving), tending to produce beneficial
acquired characters or better conditions for people to live in, but not
tending (except incidentally and indirectly) to produce people who can
hand on the improvement by heredity.
EVOLUTION (unroll), ORGANIC, the progressive change of
living forms, usually associated with the development of complex from
simple forms.
EXOGAMY (out mating), a custom of primitive peoples which
requires a man to choose a wife from some other group (clan, gens,
tribe, etc. ) than his own.
FACTOR (maker), a name given to the hypothetical _something_,
the independently inheritable element in the germ-cell, whose presence
is necessary to the development of a certain inherited character or
characters or contributes with other factors to the development of a
character. "Gene" and "determiner" are sometimes used as synonyms of
factor.
FEEBLE-MINDEDNESS, a condition in which mental development is
retarded or incomplete. It is a relative term, since an individual who
would be feeble-minded in one society might be normal or even bright in
another. The customary criterion is the inability of the individual,
because of mental defect existing from an early age, to compete on equal
terms with his normal fellows, or to manage himself or his affairs with
ordinary prudence. American students usually distinguish three grades of
mental defect: Idiots are those who are unable to take care of
themselves, even to the extent of guarding against common physical
dangers or satisfying physical needs. Their mentality does not progress
beyond that of a normal two-year-old child. Imbeciles can care for
themselves after a fashion, but are unable to earn their living. Their
mental ages range from three to seven years, inclusive. Morons, who
correspond to the common acceptation of the term feeble-minded, "can
under proper direction become more or less self-supporting but they are
as a rule incapable of undertaking affairs which demand judgment or
involve unrestricted competition with normal individuals. Their
intelligence ranges with that of normal children from seven to twelve
years of age. " There is necessarily a considerable borderline, but any
adult whose intelligence is beyond that of the normal twelve-year-old
child is usually considered to be not feeble-minded.
GAMETE (mate), a mature germ-cell; in animals an ovum or
spermatozoon.
GENETICS (origins), for a long time meant the study of
evolution by experimental breeding and was often synonomous with
Mendelism. It is gradually returning to its broader, original meaning of
the study of variation and heredity, that is, the origin of the
individual's traits. This broader meaning is preferable.
GERMINAL (sprig), due to something present in the germ-cell. A
trait is germinal when its basis is inherited,--as eye color,--and when
it develops with nothing more than the standard environment; remaining
relatively constant from one generation to another, except as influenced
by reproduction.
GERM-PLASM (sprig form), mature germ-cells and the living
material from which they are produced.
HAEMOPHILIA (blood love), an inability of the blood to clot. It
thus becomes impossible to stop the flow of blood from a cut, and one
who has inherited haemophilia usually dies sooner or later from
haemorrhage.
HEREDITY (heirship), is usually considered from the outside,
when it may properly be defined as organic resemblance based on descent,
or the correlation between relatives. But a better definition, based on
the results of genetics, looks at it as a mechanism, not as an external
appearance. From this point of view, heredity may be said to be "the
persistence of certain cell-constituents (in the germ-cells) through an
unending number of cell-divisions. "
HETEROZYGOTE (different yolk), a zygotic individual which
contains both members of an allelomorphic pair.
HOMOZYGOTE (same yolk), an individual which contains only one
member of an allelomorphic pair, but contains that in duplicate, having
received it from both parents. A homozygous individual, having been
formed by the union of like gametes, in turn regularly produces gametes
of only one kind with respect to any given factor, thus giving rise to
offspring which are, in this regard, like the parents; in other words,
homozygotes regularly "breed true. " An individual may be a homozygote
with respect to one factor and a heterozygote with respect to another.
HORMONES (chain), the secretions of various internal glands,
which are carried in the blood and have an important specific influence
on the growth and functioning of various parts of the body. Their exact
nature is not yet understood.
INBORN usually means germinal, as applied to a trait, and it is
so used in this book. Strictly speaking, however, any trait which
appears in a child at birth might be called inborn, and some writers,
particularly medical men, thus refer to traits acquired in prenatal
life. Because of this ambiguity the word should be carefully defined
when used, or avoided.
INHERENT (in stick), as used in this book, is synonymous with
germinal.
INDUCTION (in lead), a change brought about in the germ-plasm
with the effect of temporarily modifying the characters of an
individual produced from that germ-plasm; but not of changing in a
definite and permanent way any such germ-plasm and therefore any
individual inherited traits.
INNATE (inborn), synonymous with inborn.
LATENT (lie hidden), a term applied to traits or characters
whose factors exist in the germ-plasm of an individual, but which are
not visible in his body.
LAW, in natural science means a concise and comprehensive
description of an observed uniform sequence of events. It is thus quite
different from the law of jurists, who mean a rule laid down for the
guidance of an intelligent being, by an intelligent being having power
over him.
MENDELISM, a collection of laws of heredity (see Appendix D)
so-called after the discoverer of the first of them to become known;
also the analytical study of heredity with a view to learning the
constitution of the germ-cells of animals and plants.
MENDELIZE, to follow Mendel's laws of inheritance.
MORES (customs), the approved customs or unwritten laws of a
people; the conventions of society; popular usage or folk-ways which are
reputable.
MUTATION (change), has now two accepted meanings: (1) a
profound change in the germ-plasm of an organism such as will produce
numerous changes in its progeny; and (2) a discontinuous heritable
change in a Mendelian factor. It is used in the first sense by De Vries
and other "mutationists" and in the second sense by Morgan and other
Mendelists; confusion has arisen from failure to note the difference in
usage.
NORMAL CURVE, the curve of distribution of variations of
something whose variations are due to a multiplicity of causes acting
nearly equally in both directions. It is characterized by having more
individuals of a mediocre degree and progressively fewer above and below
this mode.
NUCLEUS (little nut), a central, highly-organized part of every
living cell, which seems to play a directive role in cell-development
and contains, among other things, the chromosomes.
PATENT (lie open), a term applied to traits which are
manifestly represented in the body as well as the germ-plasm of an
individual. The converse of "latent. "
PROBABILITY CURVE, the same as normal curve. Also called a
Gaussian curve.
PROTOPLASM (first form), "the physical basis of life"; a
chemical compound or probably an emulsion of numerous compounds. It
contains proteins which differ slightly in many species of organism. It
contains carbon, hydrogen, oxygen, nitrogen, sulphur, and various salts,
but is so complex as to defy exhaustive analysis.
PSYCHIATRY (soul healing), the study of diseases of the mind.
RECESSIVE (draw back), the converse of dominant; applied to one
of a pair of contrasted Mendelian characters which can not appear in the
presence of the other.
REGRESSION (back go), the average variation of one variable for
a unit variation of a correlated variable.
SEGREGATION (aside flock), (1) as used in eugenics means the
policy of isolating feeble-minded and other anti-social individuals from
the normal population into institutions, colonies, etc. , where the two
sexes are kept apart. (2) The term is also used technically in genetics,
to refer to the discontinuity of the variation of characteristics
resulting from the independent distribution of factors before or at the
time of formation of the gametes.
SELECTION (apart pick), the choice (for perpetuation by
reproduction) from a mixed population, of the individuals possessing in
common a certain character or a certain degree of some character. Two
kinds of selection may be distinguished: (1) natural selection, in which
choice is made automatically by the failure to reproduce (through death
or some other cause) of the individuals who are not "fit" to pass the
tests of the environment (vitality, disease resistance, speed, success
in mating, or what not); and (2) artificial selection, in which the
choice is made consciously by man, as a livestock breeder.
SEX-LIMITED, a term applied to traits which differ in the two
sexes, because influenced by the hormones of the reproductive glands.
Example, the beard.
SEX-LINKED, a term applied to traits which are connected with
sex _accidentally_ and not physiologically in development. The current
explanation is that such traits happen to be in the same chromosome as
the determiner of maleness or femaleness, as the case may be.
Color-blindness is the classical example in man.
SEXUAL SELECTION, the conscious or unconscious preference by
individuals of one sex, or by that sex as a whole, for individuals of
the other sex who possess some particular attribute or attributes in a
degree above or below the average of their sex. If the deviation of the
chosen character is in the same direction (plus or minus) as in the
chooser, the mating is called assortative; if in one direction
independent of the characteristic of the chooser, it is called
preferential.
SOMA (body), the body as distinguished from the germ-plasm.
From this point of view every individual consists of only two
parts,--germ-plasm and soma or somatoplasm.
TRAIT, a term used by geneticists as a synonym of "character. "
UNIT-CHARACTER, in Mendelian heredity a character or
alternative difference of any kind, which is apparently not capable of
subdivision in heredity, but is inherited as a whole, and which is
capable of becoming associated in new combinations with other
characters. The term is now going out of use, as it makes for clearer
thinking about heredity to fix the attention on the factors of the
germ-cells instead of on the characters of the adult.
VARIATION, a deviation in the size, shape, or other feature of
a character or trait, from the mean or average of that character in the
species.
VESTIGIAL (footstep), a term applied to a character which at
some time in the evolutionary history of the species possessed
importance, or functioned fully, but which has now lost its importance
or its original use, so that it remains a mere souvenir of the past, in
a degenerated condition. Example, the muscles which move a man's ears.
ZYGOTE (yolk), the fertilized egg-cell; the united cell formed
by the union of the ovum and spermatozoon after fertilization.
ZYMOTIC, caused by a microorganism,--a term applied to
diseases. Example, tuberculosis.
INDEX
A
Abderholden, E. , 422
Acquired character, 437
Administrative aspects, 194
Adult mortality, 345
Afghans, 321
Africa, 290, 291
Agriculture, 307
Aguinaldo, E. , 314
Aims of eugenics, 152
Alabama, 187, 202, 296
Alaska, 187
Albinism, 433
Alcohol, 44, 48, 49, 130
Alcoholism, 213, 302
Aleurone, 104
Allelomorphism, 437
Allelomorphs, 108, 427, 437
Alpine Type, 427
America, 432
American Breeders Assn. , 154, 194
American Breeders Magazine, 154
American Prison Assn. , 182
American Genetic Assn. , 154, 277
American stock, 258, 424
Americans, 427, 428
American-Chinese Marriages, 313
Amherst College, 255, 266
Amoy, 315
Ancestral Inheritance Law, 112
Anglian, 426
Anglo-Saxon, 426
Anthropological Soc. of Denmark, 155
Apartment houses, 377
Appearance, 219, 221
Appropriate opportunity, 366
Arabs, 230, 280
Argentina, 326
Aristocracy, 362
Aristodemocracy, 362
Aristotle, 32
Arizona, 187
Arkansas, 241
Armenians, 299, 302, 427
Army, American, 83
Arnold, M. , 394
Arsenic, 63
Art, 96
Asiatic immigration, 311
Asiatic Turkey, 299
Assortative mating, 126, 211
Athenians, 133
Atrophy of optic nerve, 433
Atwater, W. O. , 422
Austria, 137, 155
Australian, 129
Australian marriages, 222
Automobile, effect of 377
B
Baby saving campaign, 408
Bachelors, tax on, 353
Back to the farm movement, 355
Backward children, 188
Bahama Islands, 203
Baker, O. E. , 6
Baltzly, A. , 327
Banker, H. J. , 267, 245
Banns, 197
Barrington, A. , 13
Batz, 207
Baur, E. , 104
Bean and Mall, 285
Beans, Fig. 13.
Beeton, M. , 144, 404, 408, 411
Beggars, 302
Belgium, 138, 155, 324
Bell, A. G. , 144, 183, 226, 345, 347, 350, 402, 407, 411
Bentham, J. , 165
Berlin, 140
Bermuda, 205
Bertholet, E. , 57
Bertillon, J. , 140
Besant, A. , 269
Better babies movement, 155
Bezzola, D. , 56
Billings, W. C. , 313
Binet tests, 287
Biometric method, 31
Biometry, 437
Birth control, 269
Bisexual societies, 234
Bismarck, von, O. E. L. , 422
Blakeslee, A. F. , Figs. 2, 3, 13, 14
Blascoe, F. , 282
Bleeders, 38
Blind, 156
Blindness, 32
Blucher, von G. L. , 321
Blumer, J. C. , 244
Boas, F. , 41, 282, 283
Boer War, 321
Boer-Hottentot mulattoes, 300
Body-plasm, 27
Bohemians, 311, 427
Boston, Mass. , 261, 182
Boveri, T. , 27
Brachybioty, 409
Brachycephalic heads, 427
Brachydactyly, 433, 437, Fig. 17
Bradlaugh, C. , 269
Brazil, 325
Breton race, 273
Bridges, C. B. , 101
Brigham Young College, 219
British, 427
British Columbia, 305
British Indian immigration, 312
Bruce, H. A. , 23
Bryn Mawr College, 240, 263
Burris, W. P. , 97
C
Caesar, J. , 179, 207
Caffeine, 45
California, 172, 192
California University, 100
Cambridge graduates, 428
Cambridge, Mass. , 261
Cape Cod, 206
Carnegie Institution of Washington, 154
Carnegie, Margaret Morrison, School, 278
Carpenter, E. , 379
Carver, T. N. , 305, 367
Castle, C. S. , 243
Castle, W. E. , 87, 100, 105, 108, 300, 419, 435, Fig. 20
Catlin, G. , 130
Cattell, J. McK. , 20, 21, 268, 269
Cavour, C. B. , 19
Celibacy, 173
Celtic, 41
Celto-Slav Type, 427
Central Europe, 427
Ceylon, 129
Character, 219, 221, 437
Charm and taboo, 395
Chastity, 251, 386
Chicago, Ill. , 182, 261
Chicks, 47
Child bearing, Effect of, 346
Child Labor, 368
Childless wives, 268
Child mortality, 403, 407
Children surviving per capita, 267
China, 20, 137, 274
Chinese, 315, 397, Fig. 5
Chinese immigration, 321
Chorea, Huntingdon's, 109, 433
Christianity, 171, 394
Chromosomes, 87, 431, 437
Church acquaintances, 234
Civic Club (Pittsburgh, Penn. ), 371
Civil War, 268, 301, 321, 326, 402
Cleopatra, 207
Climate, 42
Cobb, M. V. , 96
Co-education, 267, 383
Coefficient of correlation, 212
Coercive means, 184
Cold Spring Harbor, 100
Coldness, 251
Cole, L.
